Virtual Reality Development Trends

Research and Investment Guide for Canadian VR Developers
Table of Contents

What is VR and How Can Canadian Firms Develop With It? 3
• What the Emergence of VR Means for Technology Developers 3
• Applications of Virtual Reality Systems .. 6

Virtual Reality Technology Development Timeline 7
• A Brief History of Virtual Reality ... 7
• Early Concepts .. 7
• Early Development ... 8
• Pre-Modern Development ... 8
• Modern Development ... 10

Virtual Reality Opportunities for Technology Developers 12
• Haptic Controller Technologies .. 12
• Head-Mounted Displays (HMDs) ... 12
• Omnidirectional Cameras and Photogrammetry 13
• Other Sensory Input Devices .. 13

How Canadian Technology Developers Can Capitalize on VR 15
• Research and Development .. 15
• Capital Investment .. 15
• Business and Export Expansion ... 15
• Hiring and Training .. 15

Develop a Funding Plan for Technology Investments 16
• Elements of a Government Funding Plan 16
• Access Government Funding for Virtual Reality Investments 16
Virtual reality (VR) is an interactive experience based within a simulated, computer-generated environment. Although it has long been considered a work of science fiction, virtual reality is now becoming more realistic and has practical, valuable uses. Most modern virtual reality systems incorporate the use of head-mounted displays (HMDs) that render high-quality audio and visual stimulation; some systems also incorporate haptics technology, which acts as a controller and gives users greater ability to manipulate their virtual environment.

Several major technology-oriented companies are developing virtual reality equipment and environments. Statistica is predicting the worldwide consumer VR market to reach $2.6 billion at the end of this year.

With so much progress happening within the virtual reality space, it’s becoming hard to imagine a world without virtual environments. Not only is virtual reality taking over the gaming and entertainment industries, it also has considerable implications for social sciences and psychology, medicine, and other professions where significant training is required to perform in high-risk, high-stress, and/or high-consequence situations.

As virtual reality technologies become affordable to consumers and a wider range of businesses, there will be a considerable shift towards adoption – which will change the world in many ways.

What the Emergence of Virtual Reality Means for Technology Developers

Virtual reality has wide-reaching implications for businesses, both developers and end-users. For developers, the beginning of mass-adoption provides ample room to create the systems needed to provide users with seamless virtual experiences. HMDs have progressed substantially in recent years, with companies like Facebook investing in Oculus Rift and other companies like Google developing their own proprietary innovations. This has given consumers a wealth of options at multiple price points. Still, there are several ways to improve the hardware devices used for virtual reality, including the addition of more sensory input and features that reduce the risk of health-related side effects.

While technology development is still a focal point for hardware companies, there is arguably even greater potential for software companies developing the actual experiences (realities) which users interact with. Software developers will play a key role in the emergence of virtual reality because while great technologies currently exist to provide the platform for virtual reality experiences, there are a lack of environments which enable users to work or play. While it’s essential to have the right technology in place, there needs to be an immersive, valuable experience to be gained by putting on a headset and connecting to another reality.
Let’s not forget that most key players in the virtual reality space are relatively new businesses. Oculus VR, which was acquired by Facebook in 2014, helped bring virtual reality to the forefront of people’s imaginations and made it so that consumer-level VR became a primary focus of other technology firms. Oculus VR was founded in 2010 by an 18-year-old and became synonymous with virtual reality when it raised $2.4 million in its 2012 Kickstarter campaign.

To become fully integrated into society, virtual reality still needs considerable development. This includes resolving health and safety-related issues, advancing technologies to make virtual spaces look and feel more like real life, adapting them for more professional uses, and becoming more affordable and portable. These challenges and opportunities give technology developers a great starting place for identifying how they can contribute to the advancement of VR.

Overcoming Health and Safety Issues

There are still a variety of health and safety concerns associated with virtual reality that provide an opportunity for developers. As many as one in 4,000 people may experience symptoms such as seizures, trip-and-fall and collisions, repetitive stress injuries, and interference with medical devices. Most common is eye fatigue; since people tend to blink less when watching screens, their eyes dry out more quickly while wearing an HMD than would happen without. Virtual reality sickness (similar to motion sickness) also occurs in some users, however improved hardware refresh rates have played a part in resolving this.

There are conceptual and philosophical implications associated with the use of virtual reality. As virtual realities become more realistic and users have greater control over what happens in these environments, it may become difficult for some to re-integrate into normal reality. This disconnect from reality in favour of existing in virtual settings can have profound impacts on the way we interact as a society.

Addressing these concerns is as much an opportunity for technology developers as improving virtual spaces and making the experience more immersive.

As virtual reality is adopted by more users – both for personal and professional use – there will be a growing demand for solutions that help overcome VR’s drawbacks. The short- and long-term effects of using virtual reality and augmented reality systems are still relatively unknown; as these technologies become more popular, there must be a focus on lessening negative impacts.
Bringing Virtual Spaces Closer to Reality

Making virtual spaces feel more like reality requires headsets that are ergonomically designed and optimized to provide stunning visuals; audio must be synchronized to real-time actions, and other senses must be incorporated. There are several technologies that must operate together seamlessly to make modern virtual reality systems work, and this provides exciting opportunities for innovative firms who want to contribute to the technology’s growth.

Some of the top technologies that could be improved to make virtual reality feel closer to real life include:

Head-Mounted Displays (HMDs): Devices that enable users to access virtual realities have come a long way. With so many developers – including top tech firms – creating new hardware for consumers to purchase, this area is progressing faster than perhaps any other. Still, work can be done to improve how comfortable these headsets feel, and to reduce the strain they place on users’ eyes to prevent irritation and motion sickness.

Haptics: Virtual reality headsets have some functionality in terms of controlling the simulated environment, but handheld controllers provide another layer of interactivity and immersion. Particularly when considering the professional applications of virtual reality like manufacturing and healthcare, users need the ability to manipulate the environment in as many ways as possible.

Binaural Audio: Audio, while often integrated with HMDs, is an area that needs more software-supported development. HMDs can give users the sensation of sound originating from different directions, but the range of sounds that can be transmitted is lacking. Sound needs to be a well-integrated feature of the virtual space and connected to user actions, as well as automatically generated based on the setting where a user exists. For example, when walking through a virtual reality forest, users should hear birds chirping or rain falling, as well as the crunch of leaves and sticks under their feet.

Omnidirectional Cameras and Photogrammetry: Virtual graphics can be programmed or pieced together from multiple pictures or videos. The introduction of 3D video had significant implications for virtual reality, but technologies that power it can still be advanced. Deploying more, higher-powered cameras and video devices to record and transmit video is key to unlocking greater functionality for picture and photo-based VR.

3D Computer-Generated Graphics: Developing virtual spaces based purely on a programmer’s vision or use case also has room for growth. While most VR developers use C++ as a 3D programming language, this could easily be replaced by other languages that are designed for stunning 3D worlds. Open source programming languages like X3D represent early stages of this shift, although there’s unlimited potential for virtual reality development if better, more intuitive, easier-to-program languages become available.
Applications of Virtual Reality Systems

Virtual reality has many personal and professional uses, which is why there’s so much excitement generated around its steady improvement. As more applications are envisioned and the technology becomes better equipped to provide useful results, VR will become a mainstay of everyday life.

While there are already many uses for VR available, some of the most common applications today include:

Education: Virtual reality’s most practical and original use was as an educational device. VR training offers realistic learning experiences while eliminating the real-world consequences of failing, which makes it ideal for military, healthcare, space exploration, and vehicle training modules.

Engineering: 3D computer-aided design (CAD) is making it easier than ever before for manufacturers and other industrial users to develop prototypes. Whereas pre-VR engineering required 2D models and paper printouts that require several more steps to develop working prototypes, VR has enabled rapid prototyping with significantly fewer engineers needed.

Entertainment: Most consumer-level interest in virtual reality systems comes from its impact on the entertainment sector. Video games, movies, and live performances such as music concerts have all been impacted by the emergence of virtual reality and help audiences feel more connected to the media. By helping consumers feel like a part of the game, movie, or live performance, there is much more value associated with the entertainment medium.

Healthcare and Psychology: Because of the positive emotions virtual reality can help its users experience, it has many psychological and physiological uses. So far, VR systems have been developed to support the treatment of Parkinson’s disease and anxiety disorders, reduce the impacts of post-traumatic stress disorder (PTSD), and offer a non-pharmaceutical alternative to pain management.

Heritage and Tourism: Virtual tourism is an emerging trend that helps users visit anywhere around the world from the comfort of their home. Virtual realities can be programmed to grant users the ability to travel through cities or even go back in time to visit the recreated versions of ancient societies.

Communication: One of Facebook’s main interactions is on shared experiences and communication. You can now join public “chat rooms” where you can see and interact with other VR avatars. Instead of sharing a picture with a Facebook friend, in the future you could share a 360 VR experience with them.
Virtual realities have evolved from science fiction to one of the most entertaining and educational platforms available. But the ascension of virtual realities hasn't been as quick as many believe; there have been decades of labour-intensive research and development projects behind contemporary VR and AR systems. While the pursuit of computer-generated, immersive worlds has been significantly accelerated in the past decade or two, centuries of innovation have paved the way for modern systems.

With virtual realities reaching mass consumer adoption, more money will flow towards innovating and improving the technologies behind it.

To fully understand where the technology trend is leading, it’s helpful to look at the progress that’s been made up to this point. Understanding the history of virtual reality provides an appreciation for the art and science that’s gone into its rise and identifies opportunities to further develop the technology. From panoramic paintings, to early-stage flight simulators, to the gaming industry, and finally to the wide range of practical uses it has today, virtual reality has come a long way and will continue to amass even more valuable applications.

A Brief History of Virtual Reality

The pioneers of virtual reality understood that it would one day be possible to see and feel worlds around us that weren’t physically there. They understood that the mind is a powerful tool that, given the right sensory input, could give users an extreme emotional response that overpowers perception of their environment. But how did it all start, and how has it evolved to become the cutting-edge platform that’s becoming mainstream today?

Early Concepts

In the nineteenth century, prior to the conceptualization of virtual reality, artwork was the only way people could envision people, places, or things that were not unfolding in real-time in front of them. Artists progressed from smaller works to 360-degree murals (or panoramic paintings) that were intended to fill the viewer’s entire field of vision, making them feel present at some historical event or scene.

The scientific building blocks for virtual reality started forming in 1838 when Charles Wheatstone’s research demonstrated that the brain processes two-dimensional images from each eye into a three-dimensional object. Viewing two side-by-side stereoscopic images or photos through a stereoscope gave the user a sense of depth and immersion.
Early Development

Created in 1929 and patented in 1931, the “Link Trainer” became the first commercial flight simulator. Entirely electromechanical, it contained a motor-controlled rudder and steering column that modified pitch and roll. Another small device created the feeling of turbulence-like disturbances. This revolutionary training aid was sold to the United States military and during World War II, over 500,000 pilots used the system to develop better flight skills.

Published in 1935, Pygmalion’s Spectacles was the first-ever science fiction work that contained the idea of eye goggles that let the wearer view, smell, taste, and touch a virtual world. This vision of the future kick-started the technological progression of innovations that would enable virtual reality as we know it today.

Patented in 1939, the popular View-Master stereoscope was originally used for “virtual tourism.” By this time, colour film could be used for small high-quality images and it enabled viewers to feel more immersed within the pictures. Most picture reels contained seven images and 14 slides; each image was viewed through the left and right eyes independently, helping achieve the 3D perspective that was so novel at the time. This design principle is still used today in Google’s Cardboard VR model and other low-budget VR goggles.

Pre-Modern Developments

By the mid-1950s cinematographer Morton Heilig developed the Sensorama, an arcade-style theatre cabinet that stimulated all the senses, not just sight and sound. Later patented in 1962, the machine featured stereo speakers, a stereoscopic 3D display, fans, smell generators, and a vibrating chair. The Sensorama was intended to fully immerse users in films that the machine was programmed to show; Heilig himself shot, produced, and edited six short films for the device, including Motorcycle, Belly Dancer, Dune Buggy, Helicopter, A Date with Sabina, and I’m a Coca Cola Bottle!

Heilig is also credited for the first model of head-mounted display (HMD) which is used widely for virtual reality today. In 1960, he patented the Telesphere Mask; while it did not use motion tracking to make films interactive, it provided stereoscopic 3D and wide vision with stereo sound. This made for the most immersive virtual experience available at the time.
The 1960s featured multiple virtual reality innovators aside from Heilig. In 1961, two engineers developed the first precursor to modern interactive HMDs – the Headsight. Developed for military purposes, the Headsight incorporated a video screen for each eye and a magnetic motion tracking system, which was linked to a closed-circuit camera. While it lacked the integration of computer and image generation, it provided immersive remote viewing of dangerous situations and helped save lives.

Then in 1968, Ivan Sutherland and his student, Bob Sproull, created the first HMD that was connected to a computer and not a camera. The Sword of Damocles was too heavy for any user to comfortably wear and was suspended from the ceiling, hence its name, which refers to a massive sword that hung above Damocles’ throne in Greek literature. The user needed to be strapped into the device and its computer-generated graphics were primitive wireframe rooms and objects. While not ideal, the design represented a great start towards the virtual reality systems that are used today.

By 1969 the term “artificial reality” was created by computer artist Myron Kruegere, who developed computer-generated environments that responded to the people in it. He created several projects, each incrementally better and more immersive than the last. By the time he developed VIDEOPLACE technology, users could communicate with each other in a responsive computer-generated environment while being miles apart in real life.

Computer-generated environments became less of a focus for the next decade and in 1978, the first version of Google’s Street View became available. Developed by MIT and DARPA, the Aspen Movie Map used photographs taken from a car driving through Aspen, Colorado, giving the user an interactive first-person journey around the city. While there was no HMD component to the project, it enabled first-person interactivity and allowed users (regardless of physical location) to feel like they were in another place and had control over how they existed within it.
Modern Developments

Although VR innovator Thomas Furness started working on an advanced flight simulator in the 1960s, it wasn’t until the 1980s when it was ready for use. The “Super Cockpit” had significantly more functionalities and supported computer-generated 3D maps for enhanced performance. In addition to the much-improved visual display, the training cockpit allowed trainee pilots to control an aircraft using gestures, speech, and even eye movements. The multi-million-dollar project provided considerable advancements to simulator and virtual reality technology.

Modern VR took a giant leap forward in 1987 when Jaron Lanier, founder of the Visual Programming Lab (VPL), began using and making the term “virtual reality” more commonplace. With a vision for how the technology could reshape our world, Lanier and a team of developers greatly expanded the field of virtual reality haptics, or the devices one could use to manipulate virtual reality. This included the Dataglove (glove-based haptic control) and the EyePhone (head-mounted display). They were the first company to sell VR goggles and gloves, although the price point made them out of reach for most consumers.

In 1991, virtual reality became more integrated with video games, although the technology was still far from consumer-based home models. The Virtuality Group launched a range of arcade games and machines that were intended for individual and group play. These massive machines represented a significant investment for any who purchased them (typically arcades and entertainment centres) but offered VR access to the masses who could finally participate in virtual realities.

Two years later, gaming company Sega changed the VR world when it announced a VR headset for its Sega Genesis console. Although technical development difficulties prevented it from ever launching, the wrap-around prototype glasses had head tracking, stereo sound, and LCD screens in the visor – a big step forward from anything that was offered to the consumer market at the time. It was expected to retail for $200 upon its launch, which was an affordable price point for many hardcore gamers ready to take their experience to the next level.
Nintendo was the next company to attempt a virtual reality gaming console that was affordable to the masses. The Nintendo Virtual Boy, a portable 3D gaming console, was launched in 1995 and retailed for $180, but failed to meet consumer expectations and ultimately failed despite price drops. The lack of colour graphics, lack of software support, and difficult/uncomfortable use made it an undesirable product and it was discontinued in 1996, one year after its launch.

In the late 1990s and early 2000s, most VR development focused on commercial and institutional uses, mainly as a training aid. Research indicated that virtual reality could be used as a treatment for post-traumatic stress disorder (PTSD) and trials were performed to evaluate the technology’s use for other applications. This marked a dark time for consumer markets as there was little or no progress on bringing VR to home-based users.

This changed in 2010 when Palmer Luckey, an 18-year-old entrepreneur, created the first Oculus Rift headset prototype. It featured an advanced 90-degree field of vision and relied on a computer’s processing power to deliver images. In 2012, Luckey launched a Kickstarter campaign for the Oculus Rift which raised $2.4 million. Then in 2014, Facebook bought the Oculus VR company for $2 billion. This was a defining moment in VR’s history because of the high sell price, the implied value it would hold, and the understanding that a company like Facebook could invest significantly in research and development.

Other international tech companies were soon to release their own virtual reality-based products. While relatively simple in design and performance, Google’s Cardboard product made VR an extremely affordable for consumers that own a Google phone. Companies like Samsung have taken this concept further with products such as the Galaxy Gear, which is mass produced and contains “smart” features like gesture control.

By 2016, hundreds of companies (~230) were developing VR products. Most headsets had dynamic binaural audio, but haptic interfaces were underdeveloped which made interacting in the virtual environment still fairly limited. In 2016, HTC released its HTC VIVE SteamVR headset, which was the first commercial release of a headset with sensor-based tracking that allowed users to move freely.

In 2017 and 2018, all the major tech companies had staked out a portion of the virtual reality market and were contributing significant R&D budgets towards developing technologies that would advance VR. At the 2018 F8 Facebook Developer Conference, Oculus demonstrated a new headset prototype, the Half Dome, which has an unprecedented 140-degree field of vision. Haptic systems are being developed at an incredible pace to keep up with HMDs but have not been widely released and adopted by consumers.
Virtual and augmented reality systems are receiving a flood of attention from software and technology developers. As one of the most exciting emerging sectors in the information and communications technology (ICT) industry, VR/AR is benefitting from considerable investment with the expectation that it will become a multi-billion-dollar space within the next decade. While applications are still limited in terms of widescale distribution to consumers, top technology developers such as Facebook, Google, and Samsung are leading the way to bring these artificial realities to life.

To capitalize on virtual and augmented reality technology during its rise to popularity, Canadian firms should be actively invested in research and development projects.

There are many elements of virtual and augmented reality that can be improved through modern innovation, and your business doesn’t need to be a top technology developer to participate. Haptic controller technologies, head-mounted displays (HMDs), omnidirectional cameras and photogrammetry, and other sensory-based systems are needed to bring VR/AR to the forefront of consumer technology. By investing in the development of these technologies, your firm could be a leader in the space and profit greatly during mass market adoption.

Haptic Controller Technologies

Haptics is a term that refers to using touch to interact with virtual reality. It typically requires an intermediary device such as a glove or joystick to send and/or receive touch-based feedback. Haptics has evolved in relation to virtual reality because, aside from select professional uses, its primary benefit is building immersiveness in entertainment-focused applications.

Pioneers of haptic technology, Visual Programming Lab (VPL), were the first to launch an input that would directly influence virtual reality as seen through their proprietary head-mounted displays. More recently, companies have been experimenting with haptic vests for torso feedback and even full-body haptic suits for maximum feedback for virtual systems.

Head-Mounted Displays (HMDs)

Head-mounted displays have played a key role in the development of virtual reality. Through sound and visual stimulation, HMDs provide the sense of being in a virtual space. They’re often comprised of a screen that supports stereoscopic vision to create the illusion of three dimensions, motion-tracking sensors, and an integrated headphone component.
Virtual Reality Opportunities for Technology Developers

Significant research is being done to improve the quality and reduce the cost of head-mounted displays to deliver a better virtual experience to a mass audience of users.

While primitive HMD models were either too heavy or uncomfortable to wear, VR goggles are the central focus of companies investing in the future of virtual reality. Headsets are the most vital component of virtual reality and has meant that almost all technology firms with sizeable research and development budgets are committing resources towards developing the next best headset. Facebook’s acquisition of Oculus Rift and the development of proprietary HMDs by Samsung and LG Electronics are indicators that, while advanced, there’s still a lot of innovation happening in the space.

Omnidirectional Cameras and Photogrammetry

Omnidirectional cameras, also known as 360-degree cameras, have a full field of vision that can construct a complete scene from a fixed position. While some virtual reality applications (like watching music concerts) use a single fixed position, other VR uses require another layer of depth. Photogrammetry helps build spatial awareness by analyzing multiple photographs and determining the distance between two or more points. When mapped into virtual reality, photogrammetry is essential for building a 3D world that users can move through. This is most widely-used in virtual tourism, where compiled photographs can create a virtual representation of well-known landmarks.

While computer-generated graphics will be the basis of many VR applications, there is a growing demand for virtual experiences that are developed from high-quality photos and videos.

As a relatively new area of virtual reality, there is still significant room to develop equipment that enables photo and video mapping to digital platforms. Virtual tours and experiences that are based on life-like reconstructions will emerge as an important stream of virtual reality since it has a certain “realness” to it that may lack in purely computer-generated environments. Because so many VR applications will rely on these technologies, investing in high-resolution omnidirectional cameras and photogrammetry software is essential for the success of virtual reality.

Other Sensory Input Devices

Humans rely on five senses to guide their perception of reality: sight, hearing, touch, taste, and smell. Replicating the human experience in virtual reality needs to encompass as many of these senses as possible to create the feeling of full immersion, but most modern VR systems are only capable of providing sight and hearing, with some haptic controllers also enabling limited touch interaction.
Developing innovations that can help provide virtual reality users with the sense of touch, taste, and smell will develop a richer, more life-like virtual experience.

Starting with the Sensorama, a mid-1950s invention that helped users watch films while receiving sensory input for all five traditional senses, technology has been evolving to help develop a more realistic virtual reality. While VR headsets are currently limited in their ability to provide sensory input beyond sight and hearing, they could evolve to provide enhanced touch, taste, and smell signals to the user. Current technologies could be improved to provide this functionality, or new equipment could be created to work together with existing systems to provide such an experience. Other senses, such as balance and acceleration, temperature, pain, and sexual stimulation could also be a focus for tech developers.

Top 5 Resources to Learn About VR Development

- [Medium: Comprehensive Guide to Getting Started in VR](#)
- [Virtual Field Trips and General VR Content Apps](#)
- [Unity: Resources for Getting Started in VR](#)
- [Zeeshan Arshad: Collection of VR Development Resources](#)
- [Reddit: Learn VR Development](#)
How Can Canadian Tech Developers Capitalize on VR?

Although virtual reality development projects require significant investment, Canadian government funding is available to expand cash flow and improve ROI. When used intelligently, these programs can substantially improve project outcomes and accelerate time-to-market, helping companies react to opportunities more efficiently. These funding programs commonly fall into four investment clusters, including:

Research and Development

Research and development funding helps support R&D-related activities, both internally and in collaboration with research partners. Companies may access funds to develop virtual reality hardware components, create virtual reality software and games, and advance VR systems to be used for a wider range of applications.

Capital Investment

Capital investment funding can help purchase the advanced computing systems needed to develop immersive VR experiences. It can also support purchasing equipment needed to manufacture virtual reality headsets or controllers.

Hiring and Training

Few tech developers use hiring and training grants as often as they could to improve worker skillsets. This is a missed opportunity, since firms can plan ahead and schedule regular hiring and training sessions to advance employee knowledge of VR systems and developments in the space.

Business and Export Expansion

Business expansion grants can be used to scale virtual reality system production, access new markets, develop international customers, and perform strategic marketing projects.
Develop a Funding Plan for VR Tech Investments

Virtual reality technology projects are often highly eligible for Canadian government funding programs. To receive the most value from these programs, it’s helpful to map out future projects and begin matching them to government grants and loans that can offset a portion of costs.

This planning process is one critical component of a successful funding approach. When combined with other intelligent funding strategies, companies can reduce the time it takes to complete applications and improve the likelihood of a successful funding application.

Elements of a Government Funding Plan

Government funding plans provide a detailed, action-oriented blueprint of specific Canadian government grants and loans your company may access. Through careful assessment of upcoming projects, virtual reality technology developers can identify which programs to apply for, and when the ideal time to apply is.

Government funding plans can include incentives for all major investment areas: research and development, capital investment, hiring and training, and business expansion.

To develop and execute a government funding plan for your business, perform the following activities:

1. **Identify Strategic Priorities**: Evaluate your business’ top strategic priorities over the next 12-24 months and determine where government funding is needed most.

2. **Strategize a Funding Plan**: Identify specific grants and loans based on upcoming projects and company eligibility criteria.

3. **Develop Funding Applications**: When funding programs are available, develop applications based on specific projects that are achievable and could be improved by securing grants or loans.

4. **Maintain a Commitment to Funding**: Review funding plans regularly to ensure application deadlines are met and that opportunities to receive funding are not missed.

Learn How to Access Government Funding for Virtual Reality Investments

For businesses who’ve never received grants or loans before, it can be difficult to understand how the government funding process works. This doesn’t need to be the case though; technology developers can learn about government grants and loans by attending a [free government funding webinar](#).

Register Now